Thursday 14 March 2013

What genes are related to hypokalemic periodic paralysis?


Mutations in the CACNA1S and SCN4A genes cause hypokalemic periodic paralysis.
The CACNA1S and SCN4A genes provide instructions for making proteins that play an essential role in muscles used for movement (skeletal muscles). For the body to move normally, these muscles must tense (contract) and relax in a coordinated way. Muscle contractions are triggered by the flow of certain positively charged atoms (ions) into muscle cells. The CACNA1S and SCN4A proteins form channels that control the flow of these ions. The channel formed by the CACNA1S protein transports calcium ions into cells, while the channel formed by the SCN4A protein transports sodium ions.
Mutations in the CACNA1S or SCN4A gene alter the usual structure and function of calcium or sodium channels. The altered channels cannot properly regulate the flow of ions into muscle cells, which reduces the ability of skeletal muscles to contract. Because muscle contraction is needed for movement, a disruption in normal ion transport leads to episodes of severe muscle weakness or paralysis.
A small percentage of people with the characteristic features of hypokalemic periodic paralysis do not have identified mutations in the CACNA1S or SCN4A gene. In these cases, the cause of the condition is unknown.
Read more about the CACNA1S and SCN4A genes.

No comments: