Wednesday, 9 March 2022

If my blood potassium level is normal, does that prove I don’t have hypokalemic periodic paralysis?

No.  Although having low levels of blood potassium during attacks is typical of hypokalemic periodic paralysis, between attacks, people with hypokalemic periodic paralysis can have a normal blood potassium level (frequently in the low normal range). 

Attacks of paralysis are typically triggered by the level of potassium dropping in the blood.  Such potassium fluctuations occur in everyone, but in people with familial hypokalemic periodic paralysis, these drops in potassium can produce episodes of paralysis.  For example, a large carbohydrate meal results in secretion of insulin into the blood, which results in a drop of the blood potassium level as potassium and glucose enter cells. In normal people, such a drop in blood potassium produces no symptoms. In people with familial hypokalemic periodic paralysis, however, the drop in blood potassium often triggers an episode of paralysis. 

Potassium levels in the blood can remain low as muscle is recovering from a recent attack.  During an attack, muscles that become paralyzed swell and take up potassium, causing a drop in potassium in the blood.  But as the swelling resolves, the level of potassium in the blood returns to the normal range. Consequently, a normal blood potassium after such a recovery should not be considered evidence against a person having hypokalemic periodic paralysis.

When evaluating blood potassium levels it is important to take into account recent treatments.  Having just taken potassium or being on a drug that lowers blood potassium, such as acetazolamide, will have effects on blood potassium levels. 

It is also important to consider other reasons for potassium being low.  Some people have chronic low blood potassium, for example due to kidney disease (e.g., Bartter syndrome).  They can have “secondary” or “symptomatic” periodic paralysis despite not having one of the familial “primary” periodic paralysis channel disorders.


Please Continue Here:  https://simulconsult.com/resources/hypopp/

No comments: